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Solution of the energy-dependent diffusion equation m two drmensions is formulated by 
multigroup approxtmation of the energy variable and genera! trtanguiar mesh, finite element 
discrettzatron of the spattal domam. Fimte element formulatton IS done by Galerkm’s method. 
Based on thts formulation. a two-drmensionai multrgroup hmte element drffusion theory code. 
FENAT. has been developed for the transport of neutral atoms m fusion plasmas FENAT 
solves the multtgroup dtffusion equation in &Y cartesran and R-Z cyhndrtcaltorotda: 
geometries. Use of the finite element method allows solution of problems m vvhlch the plasma 
cross sectron has an arbttrary shape. The accuracy of FENAT has been verrfied by comparing 
results to those obtamed using the two-dtmenstonal discrete ordinate transport theory code. 
DOT-J.?. Results of apphcatton of FENAT to the transport of hmtter-orrginated neuiral 
atoms m a tokamak fusion machine are presented i 1967 Academic Press. Inc 

1. INTRODUCTION 

The importance of the neutral atom distribution in a fusion plasma is well 
recognized Cl, 21. Neutral atoms influence the plasma particle and energy balance 
by undergoing ionization and charge-exchange reactions in the plasma and by 
introducing high-Z impurity atoms through processes such as sputterang and 
impact desorption. Neutral atom sputtering of limiter or divertor components and 
vacuum vessel wall in a fusion device affect the lifetime of these components, in 
addition to the problem of impurity production and plasma contaminatron. .&so, 
knowledge of the energy spectrum of neutral atoms emerging from the plasma is 
useful for diagnostic purposes, such as in the determination of the piasma ion tem- 
perature. Fluid plasma codes used to describe plasma behavior in tokamaks, such 
as WHIST [3] or BALDUR [4], employ the results of neutral calculations as 
input to the plasma simulation. For all these reasons, the accurate and efficient 
description of neutral atom transport in complex geometries is a key problem in 
fusion research. 

In general, neutral atom transport must be solved numerically because of the 
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nonhomogeneity or spatial variation of the plasma temperature and density. Several 
numerical solutions in one-dimensional geometry are available. Burrell [ 51 
developed the code, NEUCG, based on the solution of an integral equation for a 
one-dimensional cylindrical plasma. Audenaerde et al. [6] developed the one- 
dimensional slab geometry code, SPUDNUT, based on the numerical solution of 
an integral equation for the charge-exchange collision density. Hughes and Post 
[7] wrote a one-dimensional cylindrical geometry code for neutral atom transport 
using the Monte Carlo method. Duchs et al. [8] solved for the neutral atom dis- 
tribution in one-dimensional cylindrical plasma using a charge-exchange generation 
method, allowing up to 10 successive generations of charge-exchange neutrals. 
Garcia et al. [9] numerically solved for the neutral atom distribution in a one- 
dimensional slab plasma and in a half space using the F,rmethod. 

Neutral atom distribution in multidimensional plasma geometries have been 
obtained using the Monte Carlo methods. Heifetz et al. [lo] and Reiter and 
Nicolai [ 111 have reported multidimensional Monte Carlo codes for neutral atom 
transport. Codes written specifically for neutron transport, such a ANISN [12], 
DOT-4.3 [ 131, and TRIDENT [14], can be used to calculate the distribution of 
neutral atoms in plasmas. Application of ANISN is reported in reference [15]. 

Often, a one-dimensional approximation of the fusion plasma is not realistic 
because there are localized sources of neutrals or because the geometry is not 
readily simplified. We have shown elsewhere [16, 171 that energy-dependent dif- 
fusion theory with P,-Marshak boundary conditions provides very good accuracy 
for the transport of neutral atoms in fusion plasmas. A two-dimensional diffusion 
theory code for the transport of neutral atoms will be much faster than deter- 
ministic transport or Monte Carlo codes. Therefore, the code FENAT has been 
developed based on the finite element solution of the energy-dependent diffusion 
equation in J-Y Cartesian and R-Z cylindrical/toroidal geometries. The energy 
dependence is treated by the multigroup method. In Section II, the multigroup dif- 
fusion equation is written in (x. y, (v) toroidal coordinates. Finite element for- 
mulation of the solution by Galerkin’s method is treated in Section III, and the 
solution of the resulting system of algebraic equations and the characteristics of the 
code, FENAT, are presented in Section IV. Section V contains verification of the 
accuracy of FENAT and the results of sample calculations for neutral atom trans- 
port in the TEXTOR tokamak [lS]. 

II. DIFFUSION EQUATION IN TOROIDAL GEOMETRY 

The steady state energy and space-dependent diffusion equation for neutral atom 
transport is 

-V . Djr, E) V&r, E) + cr(r, E) @(r, E) 

.c dE’cr,,(r, E’ + E) f$(r. E’) + S,(r, E), (1) 
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where &r, E) is the total neutral atom flux, D(r, E) is the diffusion coefficient, 
(z!(r, E) is the total plasma-neutral interaction cross section (ionization plus charge 
exchange), crCl(r, E’ + E) is the charge exchange cross section where a neutral atom 
with energy E’ charge exchanges with a plasma ion of energy E, and .S,(r, E) is the 
volumetric source of neutral atoms. A common volumetric source would be the 
recombination source which is important in high density plasma. Treating the 
energy dependence by the multigroup method, the group diffusion equation 
corresponding ot Eq. (1) becomes [ 19,201 

-V. D,(r) Vd,(r) + a,,(r) d&r) 

where g denotes a particular energy group. For PI-diffusion theory with isotropic 
charge exchange (scattering) cross section, the diffusion coefficient D, is given by 
i/3~~,~. In Eq. (2), crg.4R is the group to group charge exchange cross section 
Evaluation of these group cross sections is discussed in [21 j. The multigroup cross 
sections used here are calculated by the code PLASMX [21]. Equation (2) 
reresents a set of G partial differential equations coupled by the first term in the 
right-hand side. 

Equation (2) is valid for any coordinate system provided proper expressions are 
used for the gradient and divergence terms. This equation will now be written in the 
toroidal coordinate system (x, ~1, Y) shown in Fig. 1. The metric (/r,, ifz, A,) ~;i Ich:s 
system is given by h, = 11~ = 1 and 12, = (R + .u). Gradient and divergence terms in 
this system are [22] 

FIG. 1. Toroidal coordmates (s, y. UI). 
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where -<, f, and @ are the unit vectors in the respective directions of the toroidal 
coordinates (x, y, Y’). Using these expressions in Eq. (2), with A = dg and 
B = D, V$,, the group diffusion equation in toroidal coordinates (x, y, Y) becomes 

=c agr -gdg. + S,,g. (3) 
g’= 1 

When written in the toroidal coordinates (r, 8, Y), where x = r cos 0 and y = r sin 8, 
Eq. (3) becomes the same as that obtained by Pomraning and Stevens [23] by first 
writing the transport equation in (r, 8, !P) and then taking the P, approximation of 
the angular flux to derive the P, diffusion equation. 

With toroidal symmetry (i.e., !&symmetry), Eq. (3) becomes 

1 a 84, 8 %g --- 
(R+x)dx iR+x)D,dw--Dg~+ac.g4g - JY _’ 

=ij ags -g4g, + &,gT (4) 
g’= I 

in domain Q. Without the factor (R +x) Eq. (4) is the group diffusion equation in 
X-I’ Cartesian coordinates, and with (R +.x) replaced by R and 3: by 2, it becomes 
the group diffusion equation in R-Z cylindrical coordinates. The boundary con- 
ditions considered for Eq. (4) can be written as 

where J,, and J,,, are the scalar current of neutral atoms at the surface, So is the 
surface source and LX is the reflection coefficient for the neutral atoms from the wall 
material. Using the Pi-Marshak expressions for J,, and J,,, in Eq. (5) [20], the 
boundary conditions can be written after some algebra, as 

DG!b= 1-a d* 
(-1 

2s, --- 
an l+c! 2 (l+a)’ (6) 

valid on dB, the boundary of the domain Q. In Eq. (6) &$,/an is the normal 
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derivative of neutral atom flux at the surface. Special cases included in Eq. (6) are 
free-surface boundary conditions (CI = 0), reflection conditions (c( = 1 ), and general 
albedo boundary conditions (a neither 0 nor 1). If there is no boundary source, 
s”=o. 

III. GALERKIN FORMULATION OF SOLUTION 

Finite element solution of Eqs. (4) and (6) is formulated by Galerkin’s method. 
Since the diffusion equation is self-adjoint, formulation by the variational method 
will result in the same equations as by Galerkin formulation. The group diffusion 
equation can be written in operator notation as 

L& = 4g (7) 

where. 

L- -V.D,V+o,., 

and 

For clarity, the subscript or superscript “g” will be dropped from now on except 
where ambiguity may arise. Let the neutral flux, d, be approximated as 

where, 

[N] = row vector of suitably choosen basis functions (functions of the spatial 
coordinates) and 

I@} = column vector of unknown flux (nodal) values. 

In the Calerkin formulation, the weak form of Eq. (7) is [24] 

s [N]‘(L$b-q)dV=O 
R 

or 

where [N]’ is the transpose of [IN]. The first term of the above equation can be 
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simplified by using vector identity and Gauss’ divergence theorem [17]. When this 
is done, the above equation becomes 

1 V[N]Tm~dV-J- 
R SR 

[N,TDf$s+JQ [N]‘o,qhw 

- ,? [NIT f ~,..,),~+S,)dY=O. 
j i 

(9) 
g’= 1 

In two dimensions, the basis functions, N, are functions of x and y. Therefore, 
from Eq. (8), 

(10) 

Let the domain Q be divided into a finite number of subdomains or elements 
(triangular) as shown in Fig. 2. Then the integrals over the domain Q and its boun- 
dary X2 in Eq. (9) can be replaced by the sum of the integrals over the domain, Q,, 
of each element and over the boundary, dQC, of each boundary elements. Now 
using Eqs. (10) and (6) for D(@SJ&) in Eq. (9) and writing out the gradient terms, 

‘1 

k(xk.Yk)& k 

FIG. 2. (a) Discretlzatlon of the domain, Q, into triangular elements. (bj The nodal conditions at 
the nodes i, J, k. (c) An element with one side belonging to the boundary, X2. 
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the finite element equations for a single element, e, for the solution of the group dif- 
fusion equation, Eq. (A), in R-Z cylindrical/toroidal coordinates is obtained: 

+2n [ -h%- [NIT(R + x) dL,. 
-m, (1 +a) 

(ii) 

In Eq. (1 1 )? expressions for differential volume and surface elements (with toroidal 
symmetry), CV, = 27c(R + X) dz dy = 2n(R +x) dA, and dS, = 2x( R +x-f dL, respec- 
tively, have been used. The integrations in Eq. (1 I) can be evaluated either 
analytically or numerically depending on the complexity of the known basis 
functions, N(x, y). When this is done, we obtain an element matrix equation as 

where A’ is a square matrix of size (IZ x n), n being the number of unknown nodal 
values in the element, e. Matrix representation for the whole domain Q and its 
boundary ~33 is obtained by properly adding Eq. (12) for all the elements in the 
domain, 52. To obtain explicit expressions for A’ and {qjPt we need basis functions. 
N(.u, y). 

Let the neutral flux d, be represented by a linear polynomial in an element, e, 

with nodal conditions: 

9=@, at x = X,, 1’ = I’, 

d=@, at x=X,, I’= Y, 

4=Gk at .x=X,. y= Yk. 

By inserting these conditions in Eq. (13), one finds, 2,) CT,, and ~1~. Then 4 can be 
written as [25] 
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where the basis functions are 

h’,=&(u,fb.x+c,y) 

Here, A is the area of the triangular element with vertices i, j, and k read counter- 
clockwise and a, 6, and c are constants determined by the nodal coordinates. The 
integrals in Eq. (11) can be evaluated analytically with linear polynomial in 
Eq. ( 13). Use of higher order polynomials would require numerical integration. If 
the side j-k of an element belongs to the boundary c~Q, then the expression for C# on 
this boundary side becomes 

since N, = 0 on j-k, and similarly for the other two sides if they also belong to the 
boundary. 

Inserting these expressions for the basis functions and their derivatives in Eq. ( 11) 
and evaluating the line and area integrals, we obtain the expressions for A’ and 
h le in Eq. ( 12). For R-Z toroidal/cylindrical geometry, A’ is given by 

d, el e2 
+2na;A, e, dz e3 [ 1 e2 e3 4 

where X= (Xi+ X, + X,)/3. The last term in Eq. (14) arises when the side i-j 
belongs to the boundary, irL?. If the element is not a boundary element, this term 
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would be absent. If j - k or k - i is the boundary side, then the last term in Eq. ( 14) 
would respectively be 

(-1 1 -ff Lpk 

0 0 0 

27c 
l+a 24 [ 0 (3x,+x,) (Ju;+X,) 

0 (x,+x,, (x,+3x,) 

or 

(3X,+-Y,) 0 (X,+X,) 
0 0 

(X,-i- -Y,) 0 (X! + 3X,) 

where 

d, = (3X, + x, + X,)/30 e,=(2X,+2X,+Xkj/60 

d, = (X, + 3x, + X,)/30 e, = (X, + 2X; -i- 2X,)/60 

d, = CX, + x, + 3x, j/30 e3 = (2X, + XI, + 2X,)/60. 

Lg, LTkT and Lz, are the lengths of the respective side of the triangular element. e, 
and {q > e is given by 

G d, 

(qy = 271 1 a,.+,& 
s’= 1 sym. 

el el CD, g’ 

4 e3 @, 1 + 2TcS:'A<, 
d, @k 

If j- k or k - i is the boundary side, then the last term in Eq. (15) would respec- 
tively be 
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where 

211 = (2X, + x, +x/J/12 

u2 = (X,+2X,+X,)/12 

u3 = (X, +X,+2X,)/12. 

It can be seen from Eq. (14) that the element matrix A’ is symmetric, diagonally 
dominant, and positive definite. When the Eqs. (14) and (15) are properly summed 
over all the elements in the domain 52, we obtain the global matrix representation 
of the nodal values of the neutral flux, @, 

AW = bib (16) 

The global matrix evidently has the above-mentioned properties. In the next section 
we discuss the solution of the matrix Eq. (16) and general characteristics of the 
code, FENAT, which is based on this solution. 

IV. SOLUTION OF THE FINITE ELEMENT EQUATIONS 

An equation similar to Eq. (16) exists for each energy group. These equations are 
coupled through the right-hand side {q} which contains the charge-exchange (scat- 
tering) source term. At each iteration over the energy groups, the right-hand side 
{q} for each group must be recalculated from the most recent group fluxes. The 
global matrix A is fixed for a specific discretization of the domain 8. Hence, we 
have, for each energy group, a matrix equation where the matrix A is fixed but the 
right-hand side is changing. Since the matrix A is diagonally dominant and positive 
definite, convergence and stability of the solution of Eq. (16) is guaranteed. The 
matrix A is banded and sparse. The bandwith depends on the problem size and the 
way of numbering the nodes. 

There are two major groups of methods for solving this set of equations. These 
are the direct or elimination methods and the iterative methods. A survey of 
available elimination and iterative methods is available elsewhere [25-291. It is a 
unanimous view in the structural mechanics community that the iterative methods 
cannot compete with the elimination methods, especially for problems with multiple 
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1 Read 8 process input data] 

I energy balance. I , 
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FIG 3. A simplified logical flow diagram for FENAT. 
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right-hand sides [25-271. As mentioned above, the right-hand side of Eq. (16) 
changes because of the charge exchange source term in it. Therefore, an elimination 
method has been selected to solve the set of Eq. (16). This method is based on the 
column profile storage of the global matrix A and its L-U decomposition by Crout 
variation of Gauss elimination [27]. 

The use of a linear polynomial for the basis functions gives a convergence rate of 
order, 0(1z2), where “h” is the size of an element. Therefore, if the element size is 
halved, the discretization error in @ will be reduced to one-fourth. In the case of 
neutral atom transport, “h” should be smaller than the mean free path near sources 
or in regions of rapid flux variation to make the discretization error negligible. In 
regions where Q, varies slowly, the element size can be equal to, or even larger than, 
the mean free path. Decreasing the mesh spacing by half will increase the number of 
nodal points to about four times and hence the computation time. If the mesh size 
is selected judiciously using the above guideline, the results will be highly accurate. 
Convergence is checked after each iteration (n) on the group fluxes (@) at each 
node (i) and on the global ionization or absorption rate (I), that is, by 

I@ :+I-@:‘1 <E 
and 

IT”+‘-PI 
@:’ ‘1 r’ 

d&Z. (17) 

Iteration is terminated whenever any of the above conditions is satisfied. 
The code we have developed based on this solution method is called FENAT, an 

acronym for finite element neutral atom transport. It is written for use on CRAY 
computers. Solution can be obtained in X-Y Cartesian and R-Z cylindrical/toroidal 
geometries. Dynamic memory allocation is provided. Hence, small problems will 
require short clock-time for running. Various plotting options such as spatial mesh 
plot in its entirity or in a specified number of windows, 3D total neutral atom flux, 
density and average energy plots, variation of total density and average energy as 
functions of poloidal angle and plasma radii as parameters, contour plot of total 
density, and plots of wall-material sputtering, erosion rate and power deposition as 
functions of poloidal angle are provided. Figure 3 is a simplified flow chart for 
FENAT. Detailed information for running the code is provided in a user’s manual 
[301. 

V. VERIFICATION OF FENAT AND ITS APPLICATION TO TEXTOR TOKAMAK 

Accuracy of FENAT has been assesed by comparing it with the two-dimensional 
transport theory code DOT-4.3 [ 131. Figure 4 compares the results of FENAT 
with those of DOT-4.3. The problem is a 20 by 20 cm square plasma in Cartesian 
coordinates. Neutrals at the top, bottom, and right surface are reflected while the 
left surface is subject to a vacuum boundary condition. A surface source of neutrals 
is localized at x = 20 cm and J’= 8-14 cm. In Fig. 4a, the medium is homogeneous 
with the scattering to total cross section ratio, c, equal to 0.8 and the mean free 
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path is 4 cm. This is a one-group solution. In Fig. 4b, the medium is plasma with 
the following properties: 

T,(O) = T,(O) = 1 KeV 

T,(20)= T,(20)= 50eV 

n,(O) = n,(O) = 5 x 10” cm mm3 

~~(20) = n,(20) = 1 x 1012 crnmd3 

energy of source neutrals, a few eV. 

Plasma properties are uniform along 1’. Temperature and density profiles are 
assumed parabolic. The flux in Fig. 4a and total density in Fig. 4b are shown as 
functions of x at 1% = 2 cm and E’ = 10 cm. Figure 5 compares the totaI neutral den- 
sity by FENAT and DOT-4.3 for R-Z toroidal geometry with 20 by 20 cm square 
cross section. The boundary and source conditions and the plasma properties are 
similar to those in Fig. 4b. Both Figs. 4 and 5 show that FENAT is quite accurate 

FENAT 
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FIG. 4. Comparislon of neutral flux (cm-’ SK’) and total neutral density by DOT-4.3 and F;ENAT 
for 2D X-MY geometries. DOT to F‘ENAT CPU time ratlo is about 4 m case (a) and abost 62 in case :b) 
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FIG. 5. Comparison of total neutral atom density by FENAT and DOT-4.3 for 2D R-Z toroidal 

geometry. DOT to FENAT CPU tune ratio IS about 96. 

TO PUMP 

LIMITER 
(ALT-II) 

FIG. 6. TEXTOR geometry with ALT-II hmiter: (a) cutaway view of the TEXTOR vessel; (b) 
TEXTOR cross section showing the location of the limiter, ALT-II. 
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compared to the transport theory. For the cases in Figs. 4b and 5, FENAT is about 
62 and 96 times faster than DOT-4.3, respectively. It appears that the transport 
theory code converges rather slowly when there is complete up-scattering and 
down-scattering in the multigroup cross section as is the case for plasma-neutral 
interactions. 

FENAT has been applied to calculate the distribution of limiter-originated 
neutral atoms in the TEXTOR tokamak plasma [31]. Figure 6 shows the 
TEXTOR geometry. Figure 6a shows a cutaway view of the vacuum vessel with the 
toroidal belt limiter, ALT-II [IS] in place. Figure 6b shows a cross-sectional view 
of the vacuum vessel. The limiter is located in the fourth quadrant centered at 45’ 
and is a localized source of neutral atoms due to the recycling of neutralized plasma 
ions from the limiter surface. The neutral source is 20 tirnes larger at the limiter tips 
than at the rest of the limiter surface. Table I contains the TEXTOR parameters 
and the plasma properties, The reflection coefficients are calculated from Ref. ‘321, 
All neutral atoms not reflected directly from the wall are assumed to desorb and 
reenter the plasma with a few eV of energy. Fifteen energy groups up to the 
maximum energy of 3 keV have been used. 

Figure 7 shows the spatial mesh plotted in four windows. The boundary elements 
marked by ?s“ represent the limiter (surface source). Total neutral atom density 1s 
shown in the 3D plot in Fig. 8. The two peaks correspond to the tips of the limiter. 

A 3D plot of average neutral energy is shown in Fig. 9. Figure 10 shows the average 
energy plotted as a function of poloidal angle at five plasma radii. Figures 9 and 10 
show that the average energy of the neutral atoms is low near the plasma edge aEd 
higher and flat towards the center of the plasma. This is due to the well-known fac.ft 
that plasma acts as a filter for low energy neutrals so that the energy spectrum of 
neutral atoms becomes harder as one proceeds towards the center of the piasma. 
The plasma is optically thin for high energy neutrals. In this problem, there are 

TABLE I 

TEXTOR Parameters and Plasma Properhes 

Major radius 175 cm 
Minor radius 48 cm 

Plasma cross section Circular 
Elmiter material Graphite 
First-wall material (assumed Iron) Stainless steel 

Central plasma Ion temperature 0.773 keV 
Central plasma electron temperature 0.865 keV 
Edge plasma Ion temperature 50 eV 
Edge plasma electron temperature loo ev 
Central plasma density 2.5 x 10’” cm-’ 
Edge plasma density 8.4 x 10“ cmm3 
Total plasma 10n emux rate 6.0 x 10” s ’ 

Note. Parabolic temperature and density profiles are assumed. 
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-50 0 6 50 

X(cm) 

FIG. 7. FENAT spatial mesh for TEXTOR geometry. The mesh is plotted m 4 windows. Elements 
marked by “s” represent the hmiter (surface source). 

FIG. 8. 3D plot of total neutral atom density in TEXTOR by FENAT. The maximum total density 
is normalized to 1O’O cme3. 



FINITE ELEMENT NEUTRAL ATOM TRANSPORT 

FOG. 9. 3D plot of average neutral atom energy (eV\ m TEXTOR by FENAT. Low eaergy near the 
edge is due to the tiltermg of the wall-originated low energy neutral atoms by the plasma towards ,-he 

plasma edge. 

O20 

@(DEGREES) 

FIG. 10. Varlatlon of average neutral atom energy along the pololdal direction at live piasma radii. 
The hmiter is located between 297 and 333’ 
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1886 nodal points (unknowns), 3640 triangular elements, and 15 energy groups. 
The computation time is about 2 min on the CRAY-1 (D-Machine). 

It is useful to examine the breakup of computation time for the TEXTOR 
problem. Reading, printout, and processing of the data and the calculation of 
element matrices required about 2s. The entire mesh plot in 4 windows required 
about 4s. L-U decomposition of the 15 global matrices (one for each energy group) 
by Crout elimination took nearly 18s. About 4s were required per iteration over the 
15 energy groups. With a starting flux guess of zero, 26 iterations were needed to 
meet the convergence criterion of E, = 10d4 (giving a particle balance, loss to source 
ratio, of 0.9999926) and 15 iterations were needed for E, = lo-’ (balance = 0.9988). 

In a plasma simulation, plasma temperature and density evolve gradually. In this 
case, the neutral flux for the previous plasma profiles is a good guess for the new 
plasma profiles. Only a few iterations are needed for convergence. Consequently, 
the computation time will be much shorter than 2 min (si = 10P4, 26 iterations) or 
1.4 min (E, = lo-“, 15 iterations) for the above TEXTOR problem when FENAT is 
used as part of an overall plasma simulation. Again for the TEXTOR problem, we 
have probably used more than the optimum number of energy groups and smaller 
element size than required for adequate accuracy. The computation time is directly 
proportional to the number of energy groups used. 

Since multidimensional neutral atom transport is at present calculated by Monte 
Carlo codes, we provide a rough comparison between FENAT and Monte Carlo 
codes. FENAT will compare favorably in both speed and accuracy with the Monte 
Carlo code SEIJRAT [33]. The Monte Carlo code DEGAS resuired 2-5 min of 
CRAY-1 time for a neutral calculation in a 33 by 50 cm edge plasma and gives a 
maximum error of 15% (standard deviation) [34]. FENAT will require less than 
half a minute for this problem. We note that the 5-group neutral solution in the 20 
by 20 cm plasma in Fig. 5 requires only 3s to meet the convergence criterion of 
s,=lO-! 

In all of the results presented in this paper, the plasma properties and hence the 
group cross sections are functions of one coordinate only. Computation time 
required by FENAT will not change if the cross sections vary along both coor- 
dinates. Additional memory may be required if the user employs more cross-section 
sets to represent the variations of plasma properties in two coordinates. Note that 
FENAT in its present form is neither fully vecotrized nor optimized. An order of 
magnitude reduction of computation time in FENAT can be expected by optimiz- 
ing the code using vectorization, parallel processing, and local memory allocation 
simultaneously. 

VI. SUMMARY AND CONCLUSIONS 

A two-dimensional code, FENAT, for the transport of neutral atoms in fusion 
plasmas has been developed based on the solution of the multigroup diffusion 
equation using the finite element Galerkin method. Geometries allowed are X-Y 
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Cartesian and R-Z cylindrical/toroidal. FENAT can handle noncricular cross-sec- 
tion plasmas such as D-shaped or any other complicated cross section. Mesh data 
generation is not fully automatic at this stage. However, because of the semi- 
automatic mesh data generation, the actual amount of information to be suppiied 
by the user is much less than the total amount of data. In a large, high density 
plasma, the volumetric source of neutral atoms due to recombination may become 
significant. FENAT can handle both boundary and volume sources equally weEl 
[lb]. In its present form, FENAT requires that any volumetric source as well as 
boundary source be supplied by the user in the input data. However, with a minor 
modification, a recombination source can be calculated internally from the plasma 
density and temperature distributions. Comparison with the transport theory code 
DOT-4.3 has shown that FENAT is accurate and much faster than DOT-4 3. 
FENAT will be faster and give better accuracy than Monte Carlo codes. 

Localized neutral atom sources, such as limiter-originated neutrals in tokamak 
problems. lead to neutral atom density and wall effects that are strong functions of 
poloidal angle. In such cases, results from one-dimensional (slab or cylindrical j 
solutions of neutral atom distribution will be inadequate. Neutral atom dis- 
tributions from a 2D or 3D neutral atom transport code can be used in plasm2 
simulation codes such as WHIST [3] or BALDUR [4]. The use of diffusion theory 
will yield accurate solutions with considerably greater speed. The FENAT code is 
the first step in this direction and can be used in conjunction with two-dimensional 
plasma modelling codes. 
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